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Magnetic order near surfaces and corners of a planar 
Heisenberg antiferromagnet 
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Fachbereich Physk Freie Universitiit Berlin, Amimallee 14, D-I4195 Berlin, Germany 

Received 5 July 1993. in final form 20 September 1993 

Abstract. We study the isotropic spin one-half antiferromagnet on square lattices wilh (IO) 
sllrfaces and 90' comers. The magnetization and correlations are calculated using the quantum 
Monte C a r l o ~ ( ~ ~ c )  method of Suruki and Trotter. 

The behaviour of the magnetic order near a surface has been the subject of many studies 
[l]. For the case of localized magnetic moments, however, most investigations have dealt 
with systems of classicd spins. Then the general feature is a monotonous decrease of the 
order from the bulk towards the surface, unless the interactions are enhanced there [2,3]. 
This is the behaviour ode expects intuitively. For king models with ferromagnetic bonds 
it follows rigorously from Griffiths' inequalities [41. For quantum systems these equalities 
can be violated [5] and a more complicated variation of the order may occur. 

There are a few studies of this problem for Heisenberg models using the spin-wave 
approximation or Green-function methods. The results for ferromagnetic systems [6,7] 
resemble those of the king case. As there, oniy finite temperatures are interesting since the 
ground state is completely ordered. The situation is different for antiferromagnets where 
quantum fluctuations exist in the ground state. These fluctuations are modified by a boundruy 
and a spatial variation of the order results even at zero temperature. For a chain with free 
ends and uniaxial anisotropy a spin-wave calculation gave the following result [SI: the order 
decreases towards the ends, but does it in a oscillatory way. Moreover, it increases again at 
the last spin and is larger there than in the bulk. Calculations on BCC and SC films [7,9,10] 
showed that such effects also exist in higher dimensions and depend on the~details of the 
surface geometry. On the other hand, exact calculations for. open chains with a fixed spin at 
one end show no enhancement of the magnetization at the opposite end for S = 4, although 
the effect~is found for S = 1 [ I l l .  

We have investigated the problem for a system that is more complicated than a chain but 
still allows us to proceed beyond simple approximations. This is the case for the planar spin 
one-half Heisenberg antiferromagnet with isotropic exchange between nearest neighbours. 
Thus we studied the Hamiltonian 

on a square lamce. The extensive work of the past years has shown that the ground state 
is ordered with a bulk magnetic moment of 0.30 in units of gpB [12-141. This is a 40% 
reduction from the maximum (Nkel) value. Thus the quantum fluctuations are strong and 
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one can also expect sizeable boundary effects. To study them, we have used the quantum 
Monte Carlo (QMC) method [15], through which the bulk properties were also obtained. 

In the following we will consider the magnetic order near a (IO) surface and near a 
90' corner formed by two such surfaces. While previous simulations dealing with periodic 
boundary conditions always considered the square of the total staggered magnetization, we 
are interested here in local quantities. The two geometries are shown in figure 1. For 
the case of a (10) surface, the lattice was closed to form a cylinder. The spins along 
one boundary were fixed in staggered positions. This breaking of the symmetry makes 
it possible to calculate directly the magnetization mj = I(Sj)l in the layers [2]. Upon 
increasing the size of the L x L system the profile will approach its infinite-lattice limit. 
This procedure is analogous to the way one calculates classical order parameters via the 
corner transfer matrix method [16]. For the case of the corner, a different method was used. 
There the spins along all boundaries were left free and the magnetization was determined 
from the asymptotic correlation functions between spins on equivalent positions j ,  j' via 
mj = ,/-. For spins at opposite corners, the distances are relatively large and thus 
convenient for the extrapolation to L = W. It was also checked that the two procedures 
give consistent results. 

C Kaiser and I Peschel 

( a )  (b l  

Figure 1. Square lattices with a free. (IO) surface and fixed spins at layer L (a) and 90° ~ m e r s  
formed by free boundvies @). 

In the QMC method one calculates the thermal expectation values of observables 
( A )  = Z-' Tr(Ae-fl") from which the ground state values can be extracted in the limit 
B + 63. The trace is rewritten by decomposing 71 into two non-commuting parts, 
H = 'HI + 762.  For this one uses a chequer-board decomposition of the lattice [12,17]. 
Then the Trotter formula [18] 

is applied, where B = B/m.  Inserting complete sets of eigenstates of Skt between 
the exponentials, one obtains the partition function of a classical (king) system with an 
additional (Trotter) dimension. For fixed m one then deals with a lattice of L x L x 2m 
sites. Since S& commutes with HI and Hz, the number of (+) spins remains constant in 
the 2m Trotter planes and one may connect them by so-called world lines, which are closed 



~~ 

~ ~ ~ . . ~  . 
Planar Heisenberg antiferromagnet 1151 

in the Trotter direction. The Monte Carlo procedure can then be viewed as a process where 
these lines are moved around in the classical system. This is done via a number of local spin 
flips which simulate the quantum fluctuations. They are carried~out in cubes of interacting 
spins forming the three-dimensional system, as described in [17]. 

At free or fixed boundaries, these processes have to be modified. The flip probabilities, 
which depend on the local surroundings, are changed and certain types of flips which would 
move the world lines out of the system, do not appear. Non-zero winding numbers [12,17], 
which occur for periodic boundary conditions (in a particular spatial direction), are excluded 
automatically. Thus for the corner problem only local flips that turn around four spins were 
used. In the surface case, a global flip corresponding to cutting and reconnecting the 
word lines was also applied. Thereby the winding number in the y-direction was changed. 
However, the acceptance rate decreases exponentially in larger systems and the process may 
be omitted for L =- 12. All simulations were performed in the subspace S;ot = 0 with L2/2 
world lines which contains the exact ground state [191. 

The Monte Carlo averaging involved up to 3.5 x lo4 spins and 3-7.5 x lo5 sweeps with 
the first 1-3 x 1 6  sweeps used for thermalization. The Trotter limit m -+ 00 was taken 
by a linear fit of the data versus p*, using five or six values of m so that B2 << 1. To obtain 
the ground-state values, the temperature was then lowered until no further change of the 
data occurred. In the surface case, values T / J  = 0.067,0.067,0.050 were found sufficient 
for L = 8, 10,12, respectively. In the case of the comer, the necessary temperatures could 
also be estimated by calculating the internal energy in two ways, from nearest neighbour 
correlations and as a derivative of the partition function. The two~results have to agree only 
for T -+ 0 due to the restriction to S;ot = 0. A comparison of the data leads to values 
T / J  = 0.067,0.050,0.030,0.025 for L = 4,6,8,  10, respectively. These temperatures lie 
well below the gap E1 - EO, which vanishes as l/Lz [13].'Due to these low temperatures, 
the Trotter numbers have to be quite large, e.g. up to m = 179 for L = IO. This w k  the 
factor that prohibited the simulation of larger systems. The thermodynamic limit, finally, 
was taken assuming a 1/L  dependence of  the magnetization as in linear spin-wave theory. 
It is believed that the exact results also follow this law [12]. 

We first present some results for th,e short-range order as measured by the nearest- 
neighbour correlations (SjS;). In figure 2 these correlations are shown'for a 12 x 8 lattice 
at T / J  = 0.067. The absolute values at this temperature are actually a few percent larger 
than in the ground state. One notices oscillations within two or three lattice constants from 
the surface and the comer. Right at the comer (bond a)  the correlation is strongest with a 
value of -0.151. which is 32% higher than the'value -0.114 in the centre of the system. 
This can be attributed to the constrained motion of the world lines' in the comer. .~ The 
weakest correlation is found for the bond b with a value of -0.106. Altogether the effects 
at the surface, where the spins have fewer neighbours, dominate and the energy per bond 
is lower than in the system with periodic boundary conditions. The same has been found 
for systems with static holes 1201, which can be viewed as having inner surfaces. It is also 
in accord with the results for  other^ antiferromagnets where the number, of neighbours can 
be varied [21,22]. 

Oscillations in the short-range order also occur in Heisenberg chains with open ends 
[23,24] where the boundary effects decay only slowly (as l/j) into the interior. For a chain 
the basic mechanism can be seen quite easily in the resonating valence bond (RVB) picture. 
The exact ground-state wave function is a superposition of singlet products 1251, or Rumer 
functions [26]. The simplest case is a ring of four sites. Then there, are only two such 
functions and one has 

(3) iqOo) = cI (121 (341 +cZ (231 {411 
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F w r e  2. Nearest-neighbour correlations (S;S;) in Ute +direction. The numerical values ?re 
denoted by pDihts and planed above their laftice positions (see also figure I(b)). 

where {ij) denotes a spin singlet. Symmetry then gives c1 = cz and the correlations are 
(SfSi;.I)  = -0.166. If one cuts the bond between spins 1 and 4, one finds CZ/CI = 0.366. 
Thus the. singlet {41) enters with a lower, and (121'and {34} with a higher weight than 
in the ring, As a result the correlation is strongest at the open end  (S;Sg) = -0.228, 
(SgS;) = -0.083. The situation is analogous in longer chains. 

Within a spin-wave calculation one may argue that there are two competing effects at 
the end of a chain and at arbitrary surfaces in general [27]. In the Hamiltonian the uniaxial 
term JSfS; which favours the Nee1 order, is missing. But obviously this is more than 
compensated for by the absence of the flip term J(S:S; + S;S,$. This term causes the 
quantum fluctuations and has a stronger effect on the correlation. 

Table 1. Numerical values of the surface and comer magnetization at positions marked in 
fiar+ 1. 

(IO) surface 90° comer 

L mt m2 m* mB 

10 0238(2) 0.250(2) 0.2L4(5) 0239(5) 

m OZW(9) 0.224(8) 0.143(6) 0.130(10) 

12 0235(3) 0.144(3) - - 
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We now tum to the long-range order, i.e. the staggered magnetization. Table 1 gives 
the numerical results for four selected positions (marked in figure 1) together with the 
extrapolatiohs to the infinite lattice size. Compared with the nearest-neighbour correlations 
one sees a clear difference: the magnetization is reduced near the boundary. The effect 
is quantitatively quite large, about 25% for the (IO) surface and over 50% for the comer, 
compared to the bulk. For correlations between spins in the surface the crossover from 
enhancement to reduction occurs for distances longer than three lattice constants. Such 
effects have also been noticed in [ZO]. 

It is remarkable that the surface value is practically the same as in the bulk of a 
honeycomb lattice [ZSI; which has the same coordination number (3) as the boundary spins 
here. For the surface, one also notices that the first two layers show virtually the same 
moment, thus forming a small plateau. Beginning with the third layer the magnetization 
then increases monotonoilsly towards its bulk value. By contrast, a spin-wave calculation 
does not give this plateau, although it leads to a very similar result (0.217) for the moment 
in the first layer. Rather it predicts a continuous inciease of the order and beyond the first 
few layers it apprdaches its bulk limit approximately as l / j .  More interesting are the eomer 
results. There one finds inded a small ‘oscillation’. The corner spin has a slightly larger 
magnetization than the next one diagonally inward at position B. From this point of view, 
the plateau found at the surface tan be interpreted as an incipient increase of the boundary 
magnetization, which.then becomes visible at the corner. In figure 3 the value of the order 
parameter is indicated for some additional sites in the lattice. One sees that also as one 
moves away from the corner along the surface (A +C+D in figure 1) the magnetization 
first decreases a little and then increases again monotonously. 

.~ 

_. ~ 1. ttJ::il ’~ z .  
0.11 0.13 0.17 ’ . 0.22 

Figure 3. Spontaneous magnetization at various lattice positioni in the thermodynamic h i t  

In summary, we have found sizeable surface effects resulting from the influence of 
the geometry on the quantum fluotuations. The results are different, however, for the 
short and the long-range order. The correlations are enhanced at the surface and show 
clear oscillations whereas the order pirameter displays a more conventional profile: The 
appearance of &illations is, in principle, not so surpriking. They can be viewed as a 
result of the antiferromagnetic nature of thearder, which favours unit cells with two atoms. 
Correspondingly, oscillations have also been found around static holes [20,27]. They also 
OCCLU in magnets with itinerant electrons. In this case, however, non-trivial order-parameter 
profiles appear for ferro- and for antiferromagnets [29-311. Thus the mechanism is different 
in detail. 

Band magnets also show a surface enhancement of the order, which can be related to 
an increased density of states. In our case the situation is not so simple and the f o m  of 
the profiles not obvious, Comparing the v a n @ ~ s ’ ~ s u l t s ,  it seems that also here an ‘oped’ 
surface with no bonds inside a layer favours a large magnetization 191. The boundary spins 
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then have only a minimal number of neighbours to which they must adapt. Whether it is 
actually possible that the surface order exceeds the bulk value is, however, still not clear. 
It is therefore planned to study the (1 1)  surface of the square lattice with the QMC method 
in order to clarify the situation. 

We would like to thank J Behre, S Miyashita, J D Reger and R Schrader for various 
discussions. 
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